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“Mathematics is a study which, when we start from its most familiar portions, may be pursued in 

either of two opposite directions. The more familiar direction is constructive, towards gradually 

increasing complexity: from integers to fractions, real numbers, complex numbers; from addition and 

multiplication to differentiation and integration, and on to higher mathematics. The other direction, 

which is less familiar, proceeds by analysing, to greater and greater abstractness and logical 

simplicity; instead of asking what can be defined and deduced from what is assumed to begin with, 

we ask instead what more general ideas and principles can be found, in terms of which what was 

our starting point can be defined or deduced.” (Russell, 1930) 
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Abstract:  

There are several reasons for choosing a different set of axioms for a particular theory, ranging 

from mathematical curiosity (e.g. one wishes to explore the pragmatic differences between an axiom 

being held as true or not) to, as is more often the case, a metamathematical motivation. This may 

include, among other reasons, adopting a different set of axioms because they assume different 

philosophical beliefs about the field of study. Another common reason is because the “overall 

picture” of the field becomes much more aesthetically pleasing to the intuition with a different set of 

axioms, or in other words, it makes more sense to use those particular axioms. Set theory is a branch 

of mathematics which is subdivided into several various axiomatizations, or theories with different 

axioms. The predominant theory is known as Zermelo-Fraenkel set theory. However, there are 

countless alternative axioms for set theory one can take, from von Neumann, Bernays, and Gödel’s 

theories which incorporate classes, to Quine’s New Foundations theory, and even to Intuitionistic set 

theory which uses a different logic altogether, and hence a different mathematics, to describe the 

behavior of sets.  

The main intent of this paper is to examine the different axioms of set theory which present 

different intuitive pictures of the set-theoretic universe, that is, all the objects which set theory as a 

branch of mathematics aims to study. These different axiomatizations of set theory have been 

developed by different mathematicians and philosophers over the course of the last century. In 

particular, we will give particular attention to why, intuitively or philosophically, we should choose 

to accept one particular axiom system over another. However, many of the various axiom systems, 

while not strictly philosophically justified, do have a pragmatic mathematical justification; namely 

the theories they produce are both interesting in their own right as a field of study, and often they can 

even prove useful in other branches of mathematics. 
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I. Introduction 

Any mathematical, or even logical, theory consists of propositions and definitions. Certain 

propositions are the theorems, lemmas and corollaries of the theory, and strings of such propositions 

form a proof of a theorem, if it follows from deductive reasoning. In this manner, the theory is 

expanded by constructing proofs of theorems from propositions already available. We may also give 

explicit definitions of various concepts which the propositions express, though these definitions are 

said to be formally eliminable (Potter, 2004). In other words they are mere shorthand for the formal 

expressions of the concept given by the prior propositions of the theory. However, it is not possible 

to construct a theory from nothing, for then it would be about nothing, and thus have no propositions. 

We must have some starting propositions, or axioms, as well as concepts which have no explicit 

definition but are taken as given prior to the theory. These undefined notions are the primitive terms 

of the theory. The axioms of the theory provide a basis from which all the theorems, corollaries and 

lemmas follow by deductive reasoning. We offer no proof of axioms because they are supposed to be 

statements which we readily accept intuitively (Blackburn, 2005). From the axioms, the 

mathematician can deduce theorems and propositions which further characterize the structures and 

the properties the objects of study take. If we start with different axioms, we produce a different 

theory of the objects, although often there is the case where two different formulations of an axiom 

might give the same general principle. Even still it is possible to have different axioms for two 

different theories, but they both construct a similar picture of the field of study. There may be minor 

differences, such as notation, but we may still say that these theories are equivalent.  

This whole process is thus known as the axiomatic method. All of mathematics uses the 

axiomatic method to produce theorems over a range of subjects. From geometry, to group theory, 

arithmetic, to analysis, each branch has axioms concerning the behavior of the objects of study of 

that particular branch. For example, group theory concerns itself with the notion of groups, geometry 
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with points and lines. The exact manner in which axioms concern themselves with the primitive 

notions of a given theory is a central meta-mathematical or philosophical concern (Potter, 2004).  

Within philosophy of mathematics, the axiomatic method can be approached from two distinct 

attitudes, namely, realism and formalism (Potter, 2004). These are not strictly the names used for the 

particular views within all of philosophy of mathematics, but they will serve useful for our 

discussion. The two philosophies are seen as different responses to the question of how the primitive 

notions of a theory are treated, and consequently what role do the axioms play in establishing the 

theory.  

The realist answer is that the primitive terms have meaning independent of the theory, and thus 

the axioms are necessary true statements about those concepts (Potter, 2004). The theory is then 

precisely all that follows logically from these necessary truths of the primitive notions. Thus we 

commit ourselves to any ontological claims made by the axioms or propositions derived from them 

(Potter, 2004). That is to say, if a given proposition states the existence of some object of our theory, 

we are claiming such an object does indeed exist. A major problem with the realist position is the 

difficulty in accounting for multiple axiomatizations for a theory, when all axioms are supposed to be 

true unconditionally, and the theories have conflicting propositions. There is room within the realist 

perspective to take different attitudes towards the nature of the objects posited to exist. 

On the one hand, we have what is known as platonism which states the objects exist 

independently of the mathematician and his theory; and on the other, constructivism where the 

objects are mental constructions of the mathematician by way of the theory (Potter, 2004). It is 

important to note the constructivist attitude does not say the objects are not real, for their existence 

lies within the meaning of the primitive notions. The theory can be seen as a mental blueprint for the 

structures constructed by the mathematician. 

The other dominant response to the question concerning the meaning of the primitive notions 

and the axioms of a theory comes from the formalist philosophy. This view holds that the primitive 



7 
 

terms have no meaning outside of the theory. Different branches of formalism say more about the 

exact nature the terms take within the axiomatic system. The axioms therefore are not unconditional 

truths of these notions; indeed the formalist perspective came about with the development of 

different axiomatizations of geometry (Potter, 2004).  

One attitude under the formalist philosophy is that of implicationism, which is popular with 

mathematicians of most branches of mathematics. The view states that for any structure which 

satisfies the axioms, then the theory is a description of that structure and the properties it possesses 

(Potter, 2004). A simple and clear example of the implicationist attitude can be seen in group theory; 

where certain axioms are laid down, any structure satisfying them is said to be a group, and the 

properties it has can be derived from the axioms and supplementary definitions. When applied to set-

theory, which is seen as a foundation for all of mathematics due to its ability to provide a model for 

the natural, rational, and real numbers (and further structures which can be derived from those), we 

see that an implicationist approach is unsatisfactory.  

This is due to the fact that the implicationist approach doesn’t allow for any unconditional 

claims about a theory, thus if applied to a theory which may serve as a foundation for mathematics, 

we would not be able to make any unconditional claims, or necessary truths, within all of 

mathematics (Potter, 2004). Consequentially, mathematics would have no substantitive subject 

matter, and would be but mere derivations of propositions from certain collections of axioms. 

There is then pure formalism, which pushes this idea, many would see as an obstacle for 

implicationism, even further to the claim that mathematics has no semantic meaning at all, but is 

mere syntactical rules for the manipulation of symbols (Blackburn, 2005). Mathematics can then be 

seen as a, albeit highly complex, “game played with symbols” (Potter, 2004). This attitude seems too 

extreme of a response, and there are several objections one can make, the most prominent being an 

appeal to the direct applicability of mathematics to the empirical world.  
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Finally, one branch of formalism, which has even been argued to be a close relative of 

platonism, is postulationism, wherein the primitive notions of our theory take on their meaning from 

the axioms and propositions derived as theorems and lemmas (Potter, 2004). The theory is then seen 

as a way of providing implicit definitions of its primitive notions, and moreover, we are allowed to 

postulate the existence of the objects of the theory with the properties that the axioms and theorems 

claim they have. There is one obvious objection to this attitude, which is how are we entitled to 

derive meaning from the axioms and theorems for the primitive notions, and thus postulate the 

existence of the required objects? While there is very little argument to fully answer this objection, 

many proponents of the postulationist attitude cite the consistency of the axioms as a necessary 

criterion, if not also a sufficient one (Potter, 2004). Consistency is the property of a collection of 

propositions that one cannot prove both one sentence and its negation. Through Gödel’s 

Incompleteness theorem, which states that any consistent theory is not complete, and vice-versa, this 

yields immediately another problem for the postulationist. The Incompleteness theorem states the 

existence of a sentence, call it  , which we are inclined to take as true yet the theory neither proves 

nor refutes  , rendering the theory incomplete. The difficulty for the postulationist is explaining how 

our intuition that the sentence   is true when   is a proposition involving ultimately only the 

primitive notions and axioms of our theory (Potter, 2004).  

Nonetheless this problem is for the philosopher of mathematics, and need not concern us too 

greatly here. For in general, postulationism is a stable vantage point for examining set theory, as it 

places emphasis on the nature of the axioms, and in particular their consistency, and set theory is 

laden with multiple axiomatizations. Indeed postulationism offers justification for working withinone 

system of axioms over another, for not only the consistency of the axioms, but for also the implicit 

definitions they give of the primitive notions. This will be our chief concern in our examination of 

the two different axiomatizations of Zermelo set theory, and the equivalent theories of von Neumann, 

Bernays, and Godel, as well as Quine’s New Foundations. 
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II. Logic 

In constructing a logical theory with axioms and primitive terms, we use as a domain of 

thought, a formal language consisting of logical and non-logical symbols, as well as variables. We 

will assume a basic familiarity with classical formal logic, but give a short sketch of setting up the 

logic, first-order predicate calculus, which we will be using. We will make frequent use of the 

following logical symbols: 

      

               

          

     

          

                 

       

         

 

Other symbols in our language are variables and constants. The only non-logical symbol we will use, 

that we do not define within the course of constructing the various systems, is the relation symbol  . 

We will take this symbol as primitive, which means we give no formal definition, but instead derive 

meaning from the axioms we give which determine its behavior. The variables we will be using are 

                                 and others which we will introduce at that time. We will also 

use                 as metavariables; they are not part of our formal object language, but instead 

are variables in our meta-language.  It will be assumed from context what our variables are in each 

proposition we present. We construct from these symbols well-formed formulae by syntactical rules. 

This ensures that we can systematically infer an objective meaning to the strings constructed as well-

formed formulae.  

We do so by first stating what the atomic formulae are, and then give rules of how to construct 

more complicated sentences from those atomic cases. In set theory, we have only two atomic 

formulae;     and     , where      are terms of our language (Fraenkel, et al., 1973). We may 

also use the formulae     and    , though as these are shorthand for        and        

respectively, they are not atomic formulae. Terms can either be a free variable, or expressions which 

denote a particular object. In this paper, we will only use names to denote unique objects, such as   

which is the empty or null set. Thus such names are terms, and we can build up formulae which rely 
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on those terms and other variables to denote some other object. Then by specifying the rules of 

syntax on the atomic cases we can define the set of well-formed formulae. 

Definition: A string of symbols   is well formed: 

 If   is atomic 

 If   is one of the following forms, with         well-formed formulae:      ,      ,      , 

     , or     

 If   is one of the following forms, with   well-formed formula, and some variable  :         , 

        . 

 Nothing else is well formed 

From this definition then, we have a working formal language with which we can formulate 

propositions and theorems. We will also say that a variable   occurring in a formula   is free if there 

are no quantifiers over it (e.g.         ); otherwise the variable is bound. A formula in which all the 

variables are bound is a sentence.  

A note on the concept of equality:  

We will treat the symbol   as part of the underlying logic, which is first-order predicate 

calculus. Thus the properties we present below of equality are taken as logical truths (Fraenkel, et al., 

1973). Alternatively we could take the symbol as primitive, and thus the following are axioms prior 

to any of the axiomatizations of set theory we will be discussing. Another alternative is to provide a 

definition of   from first-order predicate calculus such that the following properties are provable 

(Fraenkel, et al., 1973). We will take the first attitude, as it makes things simpler, and can easily be 

applied to all the theories we shall consider. Thus we have for the notion of equality the following: 

i) Reflexivity:          

ii) Symmetry:         

iii) Transitivity:               

iv) Substitutivity: For some formula     ;                   

(Fraenkel, et al., 1973) 

In (iv) we used the phrase “For some formula     ”. By this we mean   is a well-formed formula 

which depends on the free variable  . We may also say that   is a condition on  , and if   contains 

other free variables we may say those are parameters on the condition.   
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III. Naïve Set Theory 

We begin with looking at what is known as “naïve set theory”. When we think of a collection 

from an unmathematical, or even an untrained, perspective, we use one of two principles in order 

make a set which we can refer to; by listing the elements that belong to the set, and by giving a 

property of all the members which thereby defines the set. For example, we can talk of the set 

consisting of “Graham Chapman, John Cleese, Terry Gilliam, Eric Idle, Terry Jones, and Michael 

Palin”, or we can refer to the same set by the property of “actors of the Monty Python comedy 

group”. The difference between these two principles is the very same difference between the concept 

of extension and intension of a concept or property. In naïve set theory, we make these two 

principles as axioms for the notion of set. 

1. Axiom of Extensionality: 

                

That is,     if and only if   has the exact same elements of  . 

2. Axiom Scheme of Comprehension: 

For any formula  ; 

               

That is, for any formula, or condition, on  , we can ‘create’ a set   consisting of the  ’s such that 

     holds true. 

(Fraenkel, et al., 1973) 

Note in the axiom scheme of comprehension, we used again the phrase “For any formula  ”. The 

axiom scheme thus states an infinite number of axioms, each filling in a different well-formed 

formula  . 

The axiom schema of comprehension however leads to paradoxes, and thus any attempt to 

build a theory with it would prove to be inconsistent.  We have already stated why from a 

postulationist perspective our theory should be consistent; moreover, consistency is important within 

any theory which uses first-order predicate calculus. This is because within this logic, if we have a 
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proof of both   and    we can then prove any  . If this were the case, our theory is useless in giving 

us information about the properties and nature of the objects of study.  

III.i. The Paradoxes 

We have already noted the axiom scheme of comprehension leads to paradoxes. Here we shall 

state exactly the contradictions which arise from the axiom scheme, rendering naïve set theory 

inconsistent. 

Russell’s Paradox: 

If we let      be the well-formed formula     in the axiom schema of comprehension, we get 

             . When     we have an obvious contradiction;         (Potter, 2004). 

What the axiom of comprehension allows us to do is create a set of entities that have a given 

property ( ). Russell’s paradox then is the set of sets which are not members of themselves. Then the 

contradiction arises when we ask whether that set contains itself. This paradox is the most famous, 

and there exist other formulations which lead us further to doubt the existence of a universal set, or 

set of all sets. 

Burali-Forti Paradox: 

We will give a definition of a well-ordering below, as well as show that every well-ordered set 

has an associated ordinal number, which themselves are ordered. Considering then the set of all 

ordinals, as it is well ordered, it has an associated ordinal number, denote it  , which must be greater 

than any element of the set. However the set is the set of ordinal numbers, so it must contain  , a 

contradiction (Aken, 1986). 

Cantor’s Paradox: 

This paradox gives another reason to deny the existence of the set of all sets. The paradox runs 

as follows. If we consider the set of all sets, denote it  , and its power set, or the set of all subsets of 

it,      and compare their sizes, we find a contradiction. For the power set of any set is bigger than 
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the set itself, by Cantor’s Theorem; however the set of all sets   contains all sets, so it contains      

as a member (Blackburn, 2005). 

III.ii. How to respond to the paradoxes 

We have several ways in which to respond to these three paradoxes. The most prominent 

response is to relinquish the axiom scheme of comprehension, and provide multiple other axioms to 

supplement a weaker form of the axiom scheme. This is especially the case in Zermelo-Fraenkel set 

theory, where we have the axiom scheme of separation (or subsets), which allows us to construct a 

set of objects that satisfy some property   if we restrict ourselves within a given set we already know 

to exist (Potter, 2004). Thus, what the common response to the paradox of Russell is to admit, as a 

theorem in most cases, that there is no universal set, or set of all sets. Likewise for the Burali-Forti 

paradox, there is no set of all ordinals. The ways in which the paradoxes are handled are dependent 

on the axioms we choose to start with, as well as if we add any other concepts into our theory.  

We will first look at constructing Zermelo-Fraenkel set theory from the principle of limitation 

of size, and then contrast it with Potter-Scott set theory, which is equivalent to Zermelo set theory, 

but is built up in a more intuitive manner using the iterative hierarchy motivation. We will also 

briefly sketch the systems of von Neumann, Gödel, and Bernays which involves the concept of 

classes, and the related system of Quine which informally uses the notion of types. These different 

axiomatizations are, for a large part, equivalent to one another. However each presents a different 

motivation for the axioms they give, and thus a different intuitive picture of the set-theoretic 

universe. The traditional formulation of the axioms of Zermelo-Fraenkel set theory are motivated by 

ensuring the paradoxes are avoided, and thus the justification for the particular axioms given are they 

are what is needed to make a fully functional set theory in which we can do mathematics. This way 

of justifying axioms is termed regressive, that is the axioms give us as much of our intuitions as 

possible, and there is a mathematical field that can be studied which follows from the axioms (Potter, 

2004). It is contrasted with an intuitive justification, where we provide axioms such that the primitive 
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notions become sufficiently clear, and the axioms can be taken as true, given their consistency 

(Potter, 2004). This later form of justification is more in accordance with the postulationist attitude, 

however, the regressive strategy is the default way for a mathematician, who does not give much 

concern for metamathematical issues, and just wants to get on with the actual deduction of theorems. 

IV. Constructing Zermelo-Fraenkel Set Theory 

IV.i. Limitation of Size 

The motivation behind this principle is to stick as close to our naive system, in which it was 

only the axiom of comprehension that proved inconsistent. It did so because it allowed us to create 

arbitrarily large sets (Fraenkel, et al., 1973). It follows to reason that we should avoid the paradoxes 

if we are careful with respect to the size of the sets which we create. This metamathematical dogma 

is what is known as the principle of limitation of size, wherein we do not create sets of too large a 

size compared to than ones we already have (Fraenkel, et al., 1973). The traditional axioms of 

Zermelo set theory are various operations we can use to construct larger sets from whatever starting 

ones we are given.  

We start with the following; 

Axiom of Pairing:  

For any   and  , there exists the set         which contains exactly just   and  . 

                        

Axiom of Union:  

For any set   there exists the set      which contains exactly the members of  . 

                        

Axiom of Powerset: 

For any set   there exists the set       which contains exactly all the subsets of  . 

                

Axiom Schema of Separation:  

For any set   and formula      where   is free in  , there exists the set                which 

contains exactly all members of   such that     . 
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(Parsons, 1974) 

The existence of null-set follows from letting      be the well formed formula    , so that   

has no elements (Fraenkel, et al., 1973). From the axiom of extensionality, it is easily seen that the 

null set is unique, and from separation, it is a subset of every set. 

These axioms alone however will not allow us to form arbitrary infinite sets, although we do 

have an infinite number of objects which we can construct an infinite chain as sets of sets of sets of... 

and so on where each set is finite (Fraenkel, et al., 1973). From this though, we can give models for 

the natural and rational numbers. However, if we are interested in analysis, and in order to construct 

the reals, we need proper infinite sets which are not hereditarily finite (Fraenkel, et al., 1973). We 

therefore need the following axiom. 

Axiom of Infinity: 

There exists a set  , with the following properties: 

(i)     

(ii) If     then also       

                      

(Parsons, 1974) 

Why can we be allowed to construct such a set? Is it not in conflict with our guiding principle, 

limitation of size? The idea is that we can construct an infinite number of objects, such as 

              (Fraenkel, et al., 1973). It seems quite intuitive we can form a set of these objects, 

especially by way of formalizing it as above so that it is finitely expressible (Fraenkel, et al., 1973). 

By way of notation, we have alluded to the fact that this axiom is able to provide a definition of the 

natural numbers, with    ,      ,        , and so on. This gives us Peano’s axioms of 

arithmetic, if we take     to be the successor of any number   (Fraenkel, et al., 1973). This way of 

identifying the natural numbers within set theory is not unique however, and we can have different 

formulations of the axiom of infinity that prefer one model of the natural numbers over another. 
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Furthermore, we can construct relations and functions from the axioms given thus far. This would 

then allow us to create models for the rational and real numbers as well. 

Relations 

From the axiom of pairing, we have for any sets   and   the set      . From this, we wish to 

define the notion of an ordered pair       such that                        . We have then 

the following 

Definition:                   

From this we can define triples,                  , and more generally, n-tuples,  

                             (Parsons, 1974). From these ordered objects, we can define 

relations. We first consider a general n-ary relation   before restricting ourselves to the primary 

discussion of binary relations. We say a set where each member is an n-tuple is an n-ary relation 

(Parsons, 1974). Thus a binary relation, henceforth simply a relation, is a set with every member is 

an ordered pair. We use the convention of writing       or        (the latter more so if   has arity 

greater than 2) rather than         (Fraenkel, et al., 1973). It is simple to then define the domain and 

image of a relation. We give here the definition of the Cartesian product of two sets, so that we can 

see how a relation can be formed on a single set. 

Definition: The Cartesian product of two sets   and  , is given by 

                    

Definition: A relation       is a relation between   and  . A relation      , i.e. a relation 

between a set   and itself, is called a relation on  . 

Definition: An ordered pair       is a structure if   is a relation on  . 

Definition: A relation   on   is  

i) Reflexive on   if             

ii) Irreflexive on   if                

iii) Transitive if                               

iv) Symmetric if                     
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v) Antisymmetric if                           

(Parsons, 1974) 

We can now define functions in terms of binary relations on sets. 

Definition: A binary relation   betweens sets   and   is called a function if  

                                      . The conventional notation for a function   which 

maps   to   is          . 

(Fraenkel, et al., 1973) 

Definition: A function   from   to   is surjective if                    . A function   is injective if  

                        . A function is a bijection, if it is both surjective and injective.  

(Potter, 2004) 

We will later use two notions which are central to developing set theory, and we give their 

definitions here, though we will not use them till later. 

Definition: Two sets     are said to be equinumerous if there is a function   from   to   which is a 

bijection. 

Definition: An isomorphism between structures       and         is a bijection between   and    where 

                          . 

(Potter, 2004) 

With this toolset, we can also introduce another axiom. The principle of limitation of size only 

restricts us to the size of each set, but we would like to be able, it seems intuitively reasonable, to 

have as many sets as we wish of any given size, if we already have one of that size. Therefore we 

introduce the following axiom scheme; 

Axiom Scheme of Replacement: 

For any set  , and any functional condition        on  , then there exists a set              , which 

contains exactly those elements   for which        is true for some    . 

                                                           

In other words, for any set   we can take a function        from the elements     to other elements 

  and form a set of the output of        (Fraenkel, et al., 1973). That is to say, if the domain of a 

function is a set, then its range or image also forms a set (Fraenkel, et al., 1973). 
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The axiom scheme of replacement was not one of the original axioms of Zermelo set theory, 

but instead was first stated by Fraenkel (Potter, 2004). Thus adding it to the other axioms produces 

Zermelo-Fraenkel set theory. The justification for the addition of this axiom is regressive in nature, 

as it provides a simpler manner to develop a theory of ordinals, and other notions of set theory of 

much higher complexity (Potter, 2004). The scheme of replacement simplifies things as it unifies all 

the extra axioms one would need to develop those notions without the scheme. 

Orderings 

Definition: A relation   over a set   is said to be a partial ordering of   if   is irreflexive and transitive.  

It is total ordering if                           . 

(Parsons, 1974) 

We also make the following definitions on relations: 

Definition: For a partially ordered set   with partial ordering  , and non-empty subset  , and element 

   ; 

i)   is a maximal element of   if                  

ii)   is a minimal element of   if                  

We can also define the greatest and least elements, as well as upper and lower bounds, and the 

supremum and infimum of a set necessary to define a Dedekind cut to define the real numbers from 

the rational numbers (Parsons, 1974). As we are not interested in the formal construction of these 

structures, we omit the definitions. Instead we make the important definition of a well-ordering. 

Definition: A relation r on a set   is well-founded if every non-empty subset of   has an  -minimal 

element. We say for a partial ordering   that it is a well-ordering on   if it is well-founded 

(alternatively, we say the set      is well-ordered).  

(Potter, 2004) 

A small corollary of this definition is if a partial ordering is a well-ordering, then it is a total 

ordering. From the concept of orderings, we can form what is known as the ordinal numbers. There 

is an entire theory of ordinal numbers, and here we give only the simple definition and a few 

resulting properties. 
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Ordinals 

If we take the notion of membership,   as a relation, we can make a very natural definition of 

ordinal numbers. 

Definition: If a set   is well-ordered by   and every member of   is a subset of  , then it is an ordinal. 

That is if the following all hold: 

i)                    , every member of a member of   is itself a member. This is 

equivalent to the condition that every member of   is a subset of  . 

ii)          , irreflexitivity for the   relation to be a partial ordering 

iii)                        , transitivity again for the   relation to be a partial ordering 

iv)                      , every non-empty subset of   has an   -minimal element. 

(Fraenkel, et al., 1973) 

We have the following propositions concerning the behavior of ordinals as easy consequences 

of this definition. We use       as variables over ordinals, and     for    , and     for 

           . 

1.         

2.                           

3.                    . This shows that              , or every ordinal is the set of all 

ordinals less than it. 

4.                         

5. For some condition     , if there is some   such that     , then there is a   such that      and 

there is no     such that       

6. For every well-ordered set       there is a unique   such that       is isomorphic to        

where    is the relation given by the ordered pairs       where      . 

(Fraenkel, et al., 1973) 

We can also define functions on ordinals by what is known as transfinite induction. We do this by 

first making the following definition. 

Definition: For a function   and set   such that      is defined for every     , we define     

             . (Fraenkel, et al., 1973) 
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Then we can find a functional condition defined on ordinals for any function   defined over 

sets such that                . As                    , we have the following: 

                        

Hence, to define a function of some ordinal   we must define it for all ordinals    . (Fraenkel, et 

al., 1973) 

By definition by transfinite recursion, we can develop an axiom which is seen as not 

fundamental to set theory being the foundational field for all of mathematics. If we left out any of the 

other axioms above, we could not fully develop set theory, and other branches of mathematics would 

be handicapped (Fraenkel, et al., 1973). The axiom however does offer a clearer picture of the set 

theoretic universe, and we will see it directly aids in the development of the iterative conception of 

set theory. We first define a function on the ordinals. 

Definition: The function   on all ordinals is defined by transfinite induction as follows;  

             

   

 

(Fraenkel, et al., 1973) 

This function defines the iterative hierarchy from within the framework of the traditional 

axiomatization of Zermelo-Fraenkel set theory. We can think of the set      for each ordinal   as a 

‘level’ containing the subsets of the ‘level’ below (Fraenkel, et al., 1973). We will see that the      

in this development of Zermelo-Fraenkel set theory correspond to the    in Scott-Potter set theory. 

We will focus on developing the later as a more intuitive perspective of set theory in the next section. 

For now however, we only list a few theorems which follow for     : 

Proposition: For every ordinal  ,                           

Proposition: If     then           and           

Proposition:               

(Fraenkel, et al., 1973) 
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We here give a definition so that we can formulate a final axiom to our theory. Also, the 

definition which follows defines the well-foundedness of a set  , which is a slightly distinct notion 

from the well-foundedness of a relation given above. We will see how the two notions are linked.  

Definition: A set   is well-founded if        for some ordinal  . The rank      of a well-founded set   

is the least ordinal   such that       . (Potter, 2004) 

We thus have the following immediate propositions: 

Proposition: For a well-founded set  ;               

Proposition: For a well-founded set  ;               

Proposition: For a well-founded set  ;       is well-founded             

Proposition: If all members of a set   are well-founded, then   is well-founded. 

(Fraenkel, et al., 1973) 

We now can give the Axiom of Foundation: Every set is well-founded. 

We can equivalently say that every non-empty set has an  -minimal element, that is      

               (Potter, 2004). Thus this axiom states that for all sets, the   relation is well-

founded. 

It is important to note that the axiom of foundation is considered by many as strictly 

unnecessary (Potter, 2004). For we can still construct ordinals, as well as cardinal numbers, and other 

mathematical structures without direct use of the axiom. Indeed, the only reason to refute the axiom 

of foundation is for greater generality, such that there can be sets which are not well-founded. This 

however is unnecessary as “no field of set theory or mathematics is in any need of sets which are not 

well-founded.”(p.88) (Fraenkel, et al., 1973).  

We will leave discussion of cardinal numbers for within the framework of the iterative 

hierarchy, as they are easier to define and work with given that set up. However this is not to say 

they cannot be formulated in the traditional manner, in fact most of the development of the theory of 

cardinal numbers was done within this axiomatization of Zermelo-Fraenkel set theory (Fraenkel, et 

al., 1973). 
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IV.ii. The Iterative Conception 

Another motivation quite different from the principle of limitation of size that guided us above 

is the iterative conception of sets. This conception forms what is known as the cumulative hierarchy. 

We have already seen one manner in which it can be presented through the axioms of Zermelo-

Fraenkel set theory. However there have been developments of the iterative conception from a more 

intuitive point of view by Scott, Potter, and Boolos. Each of these developments use slightly different 

axioms, but the theories developed are largely equivalent. We will be focusing on presenting the 

conception which Michael Potter gives in his book Set Theory and its Philosophy (2004). 

The manner in which the iterative conception is formed, as its name suggests, is by a recursive 

definition, whereby we use stages to construct ‘levels’ that form a hierarchy (Boolos, 1971). We start 

with the lowest level    containing all the individuals, or the null set (Boolos, 1971).
1
 The next stage 

we take all the subsets of the first level thus          (Boolos, 1971). We continue in this manner 

such that for each ordinal   we have            and for a limit ordinal   we have           

(Boolos, 1971). Thus the hierarchy is cumulative, once a set is formed at one level, it is a member of 

all sequent levels (Potter, 2004). 

Formal Construction: 

We will follow Michael Potter’s construction of the cumulative iterative hierarchy. We begin 

with some definitions and lemmas. 

Definition: For a formula     , we may abbreviate ‘the collection of all   such that     ’ by          .  

Lemma: If            exists, then              , for some formula     . 

Lemma: For some formulae      and     , we have 

                                

(Potter, 2004) 

                                                
1
 Michael Potter allowed for individuals in his construction of the iterative hierarchy in order to allow set theory to serve 

as a container for any other theory of any particular field. That is, given some theory T, we can embed it within our set 

theory. We will leave out the precise formulation of how it is done, and we will assume there is the possibility of having 

some individuals. However this assumption is not necessary and for a mathematician who wishes to cut everything which 

is not needed, it is easy to drop, and ignore all points when we say   is an individual, replacing it with the null set. Thus, 

the first level would be the null set. 
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Potter here introduces Russell’s paradox, prior to any axioms, and as a theorem we must accept. 

Russell’s Paradox          does not exist. 

Definition: If           then   is a collection.  

Lemma: For some formula     , if          exists, then it is a collection. 

Lemma: For some formula     , we have  

                        

(Potter, 2004) 

We can then produce the Extensionality axiom above as a theorem: 

Extensionality Principle: 

                

Proof: From the lemma above, we have                            , where 

         and         . Thus                     as required. (Potter, 2004) 

At this point, there have been no axioms, thus no commitments to any collection’s ontology; 

that is, its existence. We make a few more definitions concerning operations on collections:  

Definition: We write     as an abbreviation for the formula            , and     for 

           . 

Definition:           

Definition:                 

Definition:              

Definition:                  

Definition:                  

(Potter, 2004) 

To begin the level construction, we need a few definitions, before we introduce any axioms. 

Definition: The accumulation of   is given by the following  

                                            

Definition:   is called a history if                  

Definition: The accumulation of a history is called a level. 

Definition: A set,or a grounded collection, is some subcollection of a level. 
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Axiom Scheme of Separation: 

For a formula     , the following is an axiom: 

                      

(Potter, 2004) 

From which we are able to give another version of Russell’s paradox: There is no set of all sets. 

This is shown from the following proposition and proof. 

Proposition: There is no set   such that            . 

Proof: Let there be such a set  . Then        . And let            . Thus we have      

          , which exists by the axiom scheme of separation. Clearly,    , but if     then 

       , a contradiction. (Potter, 2004) 

Thus if the set of all sets existed, it would contain as members all subsets of it, which we have 

just proven impossible. Potter in fact uses this result to prove some facts about the behavior of levels. 

Definition: A collection   is transitive if                . 

Proposition: Every level is transitive, and hence         

Proposition:                   

From which we can say if       then    is lower than    and any level is the accumulation of 

all lower levels (Potter, 2004). Thus “the hierarchy of levels is cumulative: if an object belongs to a 

particular level, then it belongs to all subsequent levels.” (p 45) (Potter, 2004). 

Proposition: For any two levels       we have the following 

                        

Proposition: For any level  , we have    . 

Proposition:                  

Proposition:           

Proposition:           

(Potter, 2004) 

We can also prove a few facts about sets. 

Proposition: For some formula     ,          is a set if and only if there is a level    such that 

            . 
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Definition: For a set  , the lowest level   such that     is called the birthday of   and denoted     .  

Proposition: If   is a set then    . 

Proof:        from the definition above. If    , then       . But as we have from above, 

                 and thus                       , therefore we have             , a 

contradiction of the definition of     . 

Proposition: For some formula      and set  ,            is a set. 

(Potter, 2004) 

This proposition is equivalent to the axiom scheme of separation of Zermelo set theory we 

constructed in the previous section. We also have the formulation of the axiom of foundation as a 

proposition which can be proved from what has been given. We can begin to see how with one 

axiom in the iterative conception we can derive several axioms of traditional Zermelo set theory. 

Below we also have the axioms of union and powerset as propositions. 

Foundation Principle:                                     

Proposition: If   is a nonempty set of sets, then    is a set. 

Proposition: If     are sets, then     is a set. 

Proposition: If     are sets, then     is a set. 

Proposition: If   is a set, then    is a set. 

Proposition: If     are sets, then     is a set. 

(Potter, 2004) 

As the axiom scheme of separation quantifies over all levels, in order to posit sets’ existence, 

all instances of it will be true even if there are no levels (Potter, 2004). Potter thus uses a temporary 

axiom; there is at least one level, to start things off and to prove the nullset   is a set. The axiom of 

infinity Potter uses covers the existence of one level which ensures the initial level, as well as 

infinitely others (Potter, 2004). We shall continue thus first giving definitions to postulate the axiom 

of creation, from which we can work our way towards the axiom of infinity. 

Definition: The level above (or after) a level   is the lowest level    such that     . 

Proposition: If    is the level after  then                                  . 
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Axiom of creation:  For each level   there is a level    such that      . 

Proposition: For any set  , the power set     is a set. 

Proposition: For any set  , we also have the set    . Thus for any two objects (sets or individuals)     

the set               exists. 

(Potter, 2004) 

The axiom of creation and the scheme of separation however still has yet to provide us with an 

actual level we can work with, thus we introduce the last axiom to the iterative hierarchy. 

Definition: A limit level is a level   that is neither the initial level nor the level above any other level. 

Thus   is a limit level iff                   . 

Axiom of Infinity: There exists at least one limit level. 

Definition: Let the lowest limit level be denoted   . 

Proposition: The history of     is infinite. 

(Potter, 2004) 

From these three axioms, the separation scheme, creation, and infinity, we can prove all the 

standard mathematical equipment, such as ordered pairs, cross products, relations, functions, from 

which we can create models of the natural, rational, and real numbers, that the axioms of Zermelo set 

theory (without the replacement scheme) affords us. 

Cardinals 

Definition: For any set  , the set                               is called the cardinality of   and 

denoted    . A cardinal number is the cardinality of some set. 

Theorem Hume’s principle:         iff   and   are equinumerous. 

(Potter, 2004) 

This is the guiding principle in the development of the theory of cardinals. We only give a brief 

sketch of their definition to show how Cantor’s paradox is proven. In the following, we will use 

        to denote cardinal numbers. 

Definition: Let       and      ,then     iff there is an injection from   to  . We let     to be 
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Bernstein’s Equinumerosity Theorem: If there exists an injection   from   to  , and an injection   from 

  to  , then there exists a bijection between   and  .  

Proposition: The relation   partially orders the cardinals as we have the following: 

i)     

ii)               

iii)               

Proposition: For a formula  , the set            exists iff              . 

Cantor’s Theorem  If   is a set, then there are injective functions from   to     , but there are no 

surjective functions from   to     . 

Corollary: For every cardinal   there is a cardinal    such that     . 

Proposition: There is no set of all cardinal numbers. 

(Potter, 2004) 

This then is Cantor’s Paradox, but stated as a theorem we accept readily from what we have 

defined and stated as axioms. We can still however go on to derive all the properties of finite and 

infinite cardinal numbers, including their arithmetic and functions over them. Instead we turn here 

again to ordinals, and how they are formulated within the iterative hierarchy. 

Ordinals  

Definition: For any structure      , the set                                        is called the order 

type of       and denoted         . An ordinal number is the order type of a well-ordered set. (Potter, 

2004) 

In fact this definition of ordinals is largely equivalent to the definition we presented above. We 

can prove the following for ordinal numbers          . 

Proposition:  

i)           

ii)     

iii)               

iv)         

(Potter, 2004) 
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We can then go on to show everything we have seen about ordinals, including their arithmetic, 

and how to define a function over them by transfinite induction. One result we will state here is the 

Burali-Forti’s Paradox                     does not exist. Therefore the ordinals are not totally ordered 

by   (Menzel, 1986). There is debate about why the ordinals form an inaccessible set, see Menzel’s 

essay On the Iterative Explanation of Set for a more detailed account of this. 

IV.iii. Axiom of Choice: 

Definition: A choice function is a function   such that                  . 

Axiom of Choice: For every set   of disjoint nonempty sets there exists a set   such that      the set 

    has exactly one member. 

(Parsons, 1974) 

This is equivalent to saying that every set has a choice function. The axiom of choice can be 

used to prove Zermelo’s well-ordering principle, which is ‘every set is well-orderable’ (Potter, 2004). 

The axiom of choice is independent of all the other axioms, and can be formulated in numerous 

ways. It can be added to either construction of Zermelo-Fraenkel set theory, as both the limitation of 

size and iterative hierarchy produce the same theories, whichever construction one uses. The main 

justification for the axiom of choice is regressive, it allows us to prove a lot of important results in 

various branches of mathematics (Potter, 2004). There is not much intuitive justification for it as it is 

difficult to see exactly how it further defines the primitive notion of membership. 

V. Theories with classes and types 

In the iterative conception above, Potter began with the informal notion of a collection, though 

his theory did not treat explicitly them as objects. There is a closely related system, that of von 

Neumann, Gödel, and Bernays, which admits classes in addition to sets (Fraenkel, et al., 1973). The 

systems of these different mathematicians do differ slightly, but here we present them as a single 

theory with the following axioms which determine the role of classes. We use the variables 

                 to range over classes. 
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Axiom of Extensionality over Classes:                 

Definition: A class   is a set if         , where   is a class. A proper class is a class which is not a set. 

Axiom of Predicative Comprehension for Classes: For some formula      which only quantifies over sets, 

           , where   is the class containing as members exactly those sets   such that      holds. 

(Holmes, 2012) 

The Russell paradox then simply becomes a class, specifically the proper class        . We 

also have the following axiom: 

Axiom of Limitation of Size: A class   is proper iff there is a class bijection between C and the universe 

(Holmes, 2012). 

However, these axioms are not in themselves sufficient to create the sets and classes which we 

work with in Zermelo-Fraenkel set theory. But it is a simple matter of importing those axioms into 

our system with classes (Fraenkel, et al., 1973). The axioms of extensionality and choice from ZF are 

not needed, however (Holmes, 2012). It seems that classes are integral part of set theory, even if one 

is working in a system which does not admit them as mathematical objects. The concept of a class is 

a useful tool in the metamathematics to gain a clearer intuitive picture of the set-theoretic universe.  

V.i. Quines NF theory 

Quine’s answer to Russell’s paradox and the others was to restrict the variables in formulae so 

that we cannot have statements such as    . This was done by first restricting variables to be of 

certain types, indexed by the natural numbers as a typographical shorthand (Holmes, 2012). The 

point is we do not need a theory of natural numbers to use them as an indexing set (Holmes, 2012). 

This is similar to using the ordinals to index the levels in the iterative conception, apart from the fact 

that we define the ordinals in terms of the levels.  

Thus variables of type 0 range over individuals, type 1 range over sets of type 0 objects, and in 

general type     variables range over sets of type   objects (Holmes, 2012). Using this type 

restriction of variables, we can say a formula is stratified if all the variables which occur in the 

formula are assigned a certain type (Fraenkel, et al., 1973). Therefore the atomic cases of well 
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formed formula are       and        , where the superscript denotes the variable type (Holmes, 

2012). Quine’s goal was that this restriction would allow for the naïve axioms to follow without 

inconsistencies, but that ultimately we could drop the type restrictions in the formalization (Holmes, 

2012). Thus the axioms which Quine presented in his paper New Foundations for Mathematics, 

known as the ‘New Foundations’ system (NF) are simply those of naïve set theory: 

Axiom of Extensionality:                       

Axiom Schema of Stratified Comprehension:               where      is a stratified formula in 

which   does not occur free. 

(Holmes, 2012) 

Quine held that the type restrictions on variables were not necessary in the formalization of the 

system, as for any formula   which is stratified, we can associate with it the formula    where all 

the indices of type occurring in   are raised by 1 (Holmes, 2012). It can be shown that any proof of 

  can be shown to also prove   , and thus Quine conjectured      for all formula   (Holmes, 

2012). From this, we can drop the type distinction of the variables in the formulae of the system in 

the formal notation, while still holding as an informal principle that we only admit stratified formulae 

into our system. We thus avoid Russell’s paradox, as the set         is not given from the schema 

of stratified comprehension (Holmes, 2012). We do however get other sets which Zermelo set theory 

cannot have, for example the universal set           (Holmes, 2012).  

Furthermore, in Quine’s NF, while no contradictions follow from these axioms, other 

anomalies do occur. They are not contradictory, but mere drawbacks when compared to the standard 

Zermelo-Fraenkel set theory. For example, as the universal set exists in NF, it is a set which is 

equinumerous with its power-set (Holmes, 2012). Moreover, the axiom of choice fails in NF. 

However, this does not affect NF from being able to provide a model for the natural numbers, and 

thus, with a few extensions, serve as a foundation for mathematics (Fraenkel, et al., 1973). 
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VI. Conclusion 

Mathematician or not, we all have a rough idea of what the real number line looks line. We can 

imagine an infinite line stretching in both directions, with tick marks equally spaced by a given unit 

all centered from the mark 0. The natural numbers are even easier to conceive of. A tape of blocks 

labeled from 0 to 1 to 2 and so on forever. Moving from one to the next is just adding one, or in 

Peano’s formulation simply the successor of each number, with 0 not being the successor to any. 

Even the rational numbers can be seen loosely in this way, with all the blocks divided up an infinite 

amount of times such that between any two rational numbers, there is another we can find greater 

than the first, and less than the second. When we come to sets however, the picture seems less clear, 

especially using the traditional axioms of Zermelo-Fraenkel set theory. The axioms seem quite ad 

hoc in nature, given merely to avoid paradox rather than to be statements which give implicit 

meaning to the notion of set, as a postulationist attitude seems the most appropriate to take. The 

iterative hierarchy however affords us with an intuitive picture of how sets can be made, and offers a 

relatively clear implicit definition of what it means for an entity to be a set. We start with the set of 

all things, and can form any subset of them. From which we can construct sets of sets, and so on, as 

we go up the hierarchy, we create more subsets from what we already have, which can then be 

treated as elements of higher rank sets.  

Even still, as Fraenkel states, “as we see it, there exists a multi-dimensional continuum of 

possible attitudes” (p.154) (Fraenkel, et al., 1973)  we can take in response to the paradoxes of naïve 

set theory. There are countless more set theories constructed from different axioms. These range 

from the conservative ways of finding ways to restrict the axioms of naïve set theory so that they are 

consistent, to developing an entirely different mathematics (Holmes, 2012). Intuitionistic set theory 

does such by relying on intuitionistic logic. This is different from classical logic by denying the law 

of excluded middle, which states for all models for any formula      we have            

(Iemhoff, 2009). Thus as a consequence, we do not have the following for any formula     ;  
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           . As such we cannot prove the existence of some object, or the truth of some 

condition on an object, by supposing the converse true and deriving a contradiction (Iemhoff, 2009). 

The development of set theory then becomes much more complex.  

However, it seems from the presentation of the iterative conception given, this is unnecessary 

if we are interested in developing set theory as a foundation for mathematics, or even merely a large 

branch of mathematics with numerous sub-theories. From the theory of ordinals, to cardinals, and 

higher systems of infinity, set theory is a rich field of mathematics, with numerous ways to ground it 

in axioms. In order to make sense of which system we wish to take, we can appeal to meta-

mathematical and philosophical criteria. Though as the every-day mathematician is largely 

unconcerned with those issues, we can choose axioms from a simple pragmatic view, and investigate 

the consequences of a particular axiom system for no motivation other than mathematical curiosity. 
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